Synchrotron - B-Feldlinien
Wie sehen die B-Linien der Synchrotronstrahlung aus?
Im Jackson steht lapidar B =
n x E, womit sich auch das Richtungsfeld
numerisch berechnen lässt. Die Ladung bewegt sich in dieser Animation mit halber
Lichtgeschwindigkeit in der x-y-Ebene auf einer Kreisbahn mit Radius 1. Die
Richtungspfeile (B blau, E rot) geben nicht die Feldstärken
wieder (Darstellung mit der Maple-Option fieldstrength = log[10]). Aber es ist
nicht ganz einfach, in dieser Darstellung einen Überblick zu bekommen:
Feldlinienbilder sind doch wesentlich
übersichtlicher! Aber in allen mir bekannten Veröffentlichungen wird
nur auf "Jacksons Anmerkung"
B = n x E verwiesen, man
findet aber keinen Versuch, die B-Linien analytisch darzustellen, oder
"wenigstens" numerisch zu berechnen. Angeblich seien die B-Linien zu langweilig
(dull), wie in The electric field of synchrotron radiation, J. H. HANNAY AND M.
R. JEFFREY, Proc. R. Soc. A (2005) 461, 3599–3610 zu lesen ist: "As is the usual practice, we shall concentrate
on the electric field because the magnetic field is naturally obtained from it (and
also because the magnetic field structure is dull in comparison
with the electric, as we explain in the concluding remarks)." Woran liegt das? Der Betrag der elektrischen Feldstärke variiert auf engstem Raum
stark. Die Ladung bewegt sich in folgenden Abbildungen auf einem Kreis mit
Radius 1 im Uhrzeigersinn (zur Zeit 0 in (0|1)) mit
β = 0.7. Linkes Bild "3D von vorne"
(Hochachse log[10]!), rechtes Bild "von
oben". B-Linien Wenn man B-Linien darstellen will, muss man sich
also auf Bereiche konzentrieren, in denen sich die elektrische Feldstärke um
(mindestens) 4 Größenordnungen ändert. Zur numerischen Berechnung der Feldlinien
(E-Feld und B-Feld) gibt man dazu einen Startpunkt vor und folgt dann den
Richtungsvektoren iterativ, z.B. mit Euler. Die Startpunkte der
E-Linien liegen auf einem Kreis um den Ursprung mit Radius 2,
die
Startpunkte der B-Linien auf einem Kreis um den Ursprung mit Radius 6. (Die
Spiralen werden bei kleinerer Schrittweite zu Kreisen.) Ansicht "von vorne" Ansicht "von oben" Zoom: Die Startpunkte der
Berechnung liegen dort, wo sich die Feldlinien nicht bewegen. Ansicht "von
vorne" (Zeitschritt 1/400 Umlaufsdauer im Sekundentakt): "von oben" (etwas flüssiger) Und noch eine Zeitlupe (Zeitschritt 1/800
Umlaufsdauer, y-Achse gestreckt). Der Anfangszeitpunkt der Animation
unterscheidet sich von den vorangehenden Animationen, und wurde so gewählt, dass
möglichst wenige "stroboskopische Effekte" auftreten, und sich Maxwell erahnen
lässt:
In obiger Animation könnte man meinen, dass die
B-Wirbel über die y-Achse springen. Also noch etwas näher heran und etwas
langsamer mit dem Zeitschritt 1/20000.
Die B-Linien wurden in 200 Schritten mit der
Schrittweite 0.002 berechnet. Bei den E-Linien sieht man bei diesem Zoom keinen
"Knick" mehr und fast keine Bewegung. Finden Sie das langweilig? Literatur Shintake: Nuclear Instruments and Methods in Physics Research A 507 (2003) 89–92 © April 2023, Dr. Michael Komma (VGWORT) Links:
Bremsstrahlung - Feldlinien
| Hertzscher Dipol |
Gaußstrahlen | Spontane Emission |
Kaskade
| Photogalerie
| Photonenemission
|
Weisskopf-Wigner
HOME |
Fächer |
Physik |
Elektrizität |
Optik |
Atomphysik |
Quantenphysik |
Top
|